

| Description | A device for giving stability to one part of a structure by making it fast to another consisting of (A) a threaded stud with a conical end <br> flared outward; (B) a hollow, cylindrical dilating sleeve assembled over the stud and positioned against the minor diameter of the cone; <br> (C) a countersunk flat head at the end opposite the cone. |
| :---: | :---: | :---: |
| Applications/ <br> Advantages | The anchor works by expanding against the material in which it is embedded. When the flat head is turned clockwise the conical end is <br> pulled into the dilating sleeve pushing it outward $360^{\circ}$ around the anchor into the masonry. They are designed to be used in solid or <br> hollow masonry, including cinder block, brick, marble and concrete. One advantage of the sleeve anchor is that it can be removed after <br> it's been installed. Another is that the length of the sleeve induces less stress on the substrate than does a wedge anchor. It is well- <br> suited for permanently anchoring heavy equipment to concrete. |
| Material | Anchor body: AISI 1010 - 1018 cold rolled steel <br> Sleeve: AlSI 1008 cold rolled steell |
| Anchor Spacing | Anchors should be installed with a minimum of ten anchor diameters between each other and a minimum of five anchor diameters |
| from the edge. |  |

